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Introduction

Studying liquidity pool pricing dynamics is crucial for understanding decentralized
finance mechanisms and gaining insights into the efficiency of price discovery pro-
cesses.
Centralized exchanges like Binance use order book pricing, displaying buy and sell
orders, while UNISWAP-V2 employs a liquidity pool mechanism.
This research investigates the difference in price dynamics and market efficiency in
decentralized Ethereum (ETH) prices compared to centralized exchanges.
The study employs Multi-fractal Detrended Fluctuation Analysis (MF-DFA) to an-
alyze scaling exponents and multi-fractal properties of price data in Binance and
UNISWAP-V2 markets for ETH priced in BTC, DAI, and USDT.
The goal is to quantify and compare the efficiency levels in these markets, de-
termining whether ETH exhibits greater efficiency on centralized or decentralized
exchanges.
To check whether efficiency manifests first, the study incorporates the Thermal
Optimal Path (TOP) analysis, providing insights into the lead-lag relationships
between the pricing mechanisms for each ETH.
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LP’s Background

Constant Function Market Makers (CFMMs) are smart contract-based algorithms
designed to provide liquidity to decentralized exchanges and trading platforms.
Unlike traditional market makers, CFMMs operate with a fixed pricing function,
typically involving a linear relationship between quantities of two assets in a trading
pair.

k = x × y or k = x + y

Users deposit assets into the Liquidity Pool (LP) and receive LP tokens representing
their pool share.
CFMMs enable decentralized liquidity provision, reducing slippage on decentralized
exchanges but carrying risks like impermanent loss due to asset value fluctuations.
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Data

Ethereum(50.67%)

Uniswap*(31.02%)

dYdX (17.76%)

Kine (Polygon) (8.63%)

Pancakeswap (BSC) (11.81%)

Curve* (4.07%)

Others (27.14%)

USD 5.59B

USD 4.89B

USD 3.20B

*Ethereum, Arbitrum, Polygon and BSC
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Data

Data sourced from The Graph and Binance for ETH prices in BTC, DAI, and
USDT.
Dataset covers 1014 daily observations from August 11, 2020, to May 23, 2023.
All time series in the dataset are stationary.
Analyzed timeframe includes significant events such as the SARS-CoV-2 pandemic
peaks, a U.S. presidential inauguration, global supply chain disruptions, BTC reach-
ing an all-time high, Terra-Luna crash, FTX’s bankruptcy, and Ethereum merge.
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Methodology

Rolling window analysis was employed to perceive the pricing efficiency of ETH
priced in BTC, DAI, and USDT.
The MF-DFA approach is utilized with varying window sizes: 256 (Basel Commit-
tee minimum requirement), 512 (Aloui et al., Shrestha approach), and 384 days
(average of the two).
MF-DFA is a technique that allows us to compare and rank market efficiency be-
tween Constant Function Market Maker (UNISWAP-V2) and order book (Binance)
pricing mechanisms efficiency.
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MF-DFA

Multi-fractal Detrended Fluctuation Analysis

Step 1: Given a time series {xt , t = 1, · · · , N}, we convert the time series xt white noise
into random walk.

X(t) =
t∑

i=1

(xi − x), t = 1, · · · , N

Step 2: X(t) is divided into Ns ≡ int(N/s) of non-overlapping segments of equal length
s. The detrended time series (Xs(t)) is given by the difference between the actual
value and its estimate (tendency):

Xs(t) = X [N − (υ − Ns)s + 1] − xυ(t) for υ = Ns + 1, · · · , 2Ns

Step 3: The variance is

F 2
xx (s, υ) =

1
s

s∑
t=1

{Xs(t)}2 for υ = Ns + 1, ..., 2Ns .

Step 4: The qth order fluctuations are obtained by averaging the variance over all sub-
intervals

Fq(s) =

{
1

2Ns

2Ns∑
υ=1

[F 2(s, υ)]q/2

}1/q
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MF-DFA

Multi-fractal Detrended Fluctuation Analysis

Step 5: The scaling behavior of the fluctuation functions (Fq(s)) is determined by analyzing
their log-log plots against s for each value of q.
The MF-DFA technique provides a spectrum of generalized Hurst exponents - h(q).
Thus, we employ a market efficiency measure [Wang et al., 2009, Aloui et al., 2018,
Al-Yahyaee et al., 2020]

D =
1
2

(|h(−q) − 0.5| − |h(q) − 0.5|).

Consequently, if the market is perfectly efficient D = 0.
The MF-DFA parameters:

- 30 < s < Ns /5 [Wang et al., 2009]
- q ∈ {n ∈ Z| − 4 ≤ n ≤ 4} [Kwapień and Drożdż, 2012, Aloui et al., 2018]
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TOP

Thermal Optimal Path

The Thermal Optimal Path (TOP) is a method used to analyze causal relation-
ships and lagged dependencies between two time series [Sornette and Zhou, 2005,
Trichilli and Boujelbène Abbes, 2023].
It identifies the optimal path or direction of causality between two time series by
considering their dynamic interactions over time.
Specifically, the TOP analysis helps establish lead-lag relationships between the
two time series.
It determines which of the two series tends to manifest changes first, providing
insights into the temporal order of causality.
In this study, the TOP analysis is applied to explore lead-lag relationships between
Binance and UNISWAP-V2 pricing efficiency mechanism considering ETH priced
in BTC, DAI, and USDT.
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Results - MF-DFA

Table: MF-DFA method results for ETH/BTC, ETH/DAI, ETH/USDT on UNISWAP-V2 and Binance exchanges
for three distinct rolling window sizes. Daily observations ranges 08-11-2020 to 05-21-2023.

256 384 512
Pair CEX DEX CEX DEX CEX DEX

ETH-BTC 0.2685308 (III) 0.2264989 (III) 0.1713707 (III) 0.1365076 (III) 0.1435508 (III) 0.117233 (III)
ETH-DAI 0.1844849 (I) 0.1875527 (II) 0.1339416 (I) 0.1237944 (II) 0.1131219 (I) 0.09958054 (II)

ETH-USDT 0.1849068 (II) 0.186141 (I) 0.1346383 (II) 0.1234804 (I) 0.113539 (II) 0.09916427 (I)

Lower values indicate higher market efficiency, while higher values suggest lower
efficiency.
Results are consistent with prior literature:

- market transparency enhances price efficiency [Madhavan, 1996];
- arbitrage opportunities reduce the profitability of market anomalies, thereby improving

price efficiency [Shleifer and Vishny, 1997, Akbas et al., 2016].

Overall, DEX’s - such as UNISWAP-V2 - offer global accessibility, enabling users
from anywhere in the world to access and trade digital assets. This unrestricted
access may foster a more diverse market, improving price discovery and market
efficiency.
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Results - TOP

Table: This table present the percentage of lags under 1 day, indicating instances where decentralized pairs lead, and
the average lags/leads per day, offering insights into temporal dynamics and synchronization patterns.

Lag (l) ETH-DAI ETH-USDT ETH-BTC
256 384 512 256 384 512 256 384 512

X(t) < 0 52.048 46.741 61.876 50.594 48.967 59.880 59.445 64.388 59.880
Average 0.188 2.063 −1.357 −0.106 1.699 −1.371 −2.100 −5.465 −2.755

UNISWAP-V2 pricing efficiency leads against Binance regarding ETH-BTC pair for
all three rolling window sizes.
A plausible hypothesis for the leading position of UNISWAP-V2 is the association
with ETH as the native token of the Ethereum blockchain.
Rolling window of 256 observations, no relevant daily lag for ETH-DAI and ETH-
USDT. For long-term investments, 512 observations, UNISWAP-V2 leads the pric-
ing efficiency against Binance by around one day.
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Conclusions

With an increase in the number of rolling window observations, there is a consistent
increase in the market efficiency of all ETH prices.
Two interconnected viewpoints discussion: market transparency and arbitrage op-
portunities.
Cross-exchange arbitrage [Wang et al., 2022, Vakhmyanin and Volkovich, 2023] within
the decentralized market, offer global accessibility, thus contributing to improved
price discovery and market efficiency.
Users employing algorithmic trading strategies adeptly capitalize on market ineffi-
ciencies.
Fewer regulatory hurdles on the decentralized system enable implementing changes
and innovations, contributing to a nimble adaptation to evolving market conditions.
A culture of financial innovation and rapid adoption of novel concepts further
accelerates responses to challenges in market efficiency.
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Thank You!
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