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Introduction

m Studying liquidity pool pricing dynamics is crucial for understanding decentralized
finance mechanisms and gaining insights into the efficiency of price discovery pro-
cesses.

m Centralized exchanges like Binance use order book pricing, displaying buy and sell
orders, while UNISWAP-V2 employs a liquidity pool mechanism.

m This research investigates the difference in price dynamics and market efficiency in
decentralized Ethereum (ETH) prices compared to centralized exchanges.

m The study employs Multi-fractal Detrended Fluctuation Analysis (MF-DFA) to an-
alyze scaling exponents and multi-fractal properties of price data in Binance and
UNISWAP-V2 markets for ETH priced in BTC, DAI, and USDT.

m The goal is to quantify and compare the efficiency levels in these markets, de-
termining whether ETH exhibits greater efficiency on centralized or decentralized
exchanges.

m To check whether efficiency manifests first, the study incorporates the Thermal
Optimal Path (TOP) analysis, providing insights into the lead-lag relationships
between the pricing mechanisms for each ETH.
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LP’s Background

m Constant Function Market Makers (CFMMs) are smart contract-based algorithms
designed to provide liquidity to decentralized exchanges and trading platforms.

m Unlike traditional market makers, CFMMs operate with a fixed pricing function,
typically involving a linear relationship between quantities of two assets in a trading
pair.

k=xxy or k=x+y

m Users deposit assets into the Liquidity Pool (LP) and receive LP tokens representing
their pool share.

m CFMMs enable decentralized liquidity provision, reducing slippage on decentralized
exchanges but carrying risks like impermanent loss due to asset value fluctuations.

UFRGS




Introd

Outline

Data

FRGS




Introduction 0 Methodology

[e]e]

Data

00000

H * 0,
*Ethereum, Arbitrum, Polygon and BSC Uniswap*(31.02%)

Ethereum(50.67%)
dYdX (17.76%)

dxdx.
USD 3.20B
<
Kine (Pol 8.63%

ine (Polygon) ( 0) USD 4.89B

Pancakeswap (BSC) (11.81%)

Curve* (4.07%) PPGA

Others (27.14%)

UFRGS




m Data sourced from The Graph and Binance for ETH prices in BTC, DAI, and
USDT.

m Dataset covers 1014 daily observations from August 11, 2020, to May 23, 2023.
All time series in the dataset are stationary.

m Analyzed timeframe includes significant events such as the SARS-CoV-2 pandemic
peaks, a U.S. presidential inauguration, global supply chain disruptions, BTC reach-
ing an all-time high, Terra-Luna crash, FTX's bankruptcy, and Ethereum merge.
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Methodology

m Rolling window analysis was employed to perceive the pricing efficiency of ETH
priced in BTC, DAI, and USDT.

m The MF-DFA approach is utilized with varying window sizes: 256 (Basel Commit-
tee minimum requirement), 512 (Aloui et al., Shrestha approach), and 384 days
(average of the two).

m MF-DFA is a technique that allows us to compare and rank market efficiency be-
tween Constant Function Market Maker (UNISWAP-V2) and order book (Binance)
pricing mechanisms efficiency.
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Step 4:

Methodology

Given a time series {x¢, t = 1,---, N}, we convert the time series x; white noise
into random walk.
t
X(t) = Z(x, -%), t=1,--- N
i=1
X(t) is divided into Ns = int(N/s) of non-overlapping segments of equal length

s. The detrended time series (Xs(t)) is given by the difference between the actual
value and its estimate (tendency):

Xs(t) = X[N — (v — Ns)s + 1] — xu(t) for v = Ns +1,--- ,2Ns

The variance is
F2 (s,v) Z{xs £))2 for v = Ns + 1, ..., 2Ns.

The gt order fluctuations are obtained by averaging the variance over all sub-

intervals Y
2Ns a
Fol) = § gz DIF (.02 Z PPGA
v=1
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Multi-fractal Detrended Fluctuation Analysis

Step 5: The scaling behavior of the fluctuation functions (Fg4(s)) is determined by analyzing
their log-log plots against s for each value of q.

The MF-DFA technique provides a spectrum of generalized Hurst exponents - h(q).

m Thus, we employ a market efficiency measure [Wang et al., 2009, Aloui et al., 2018,
Al-Yahyaee et al., 2020]

1
D =

= 5(Ih(~q) = 0.5] - |h(q) — 0.5]).

Consequently, if the market is perfectly efficient D = 0.
m The MF-DFA parameters:

- 30 < s < N,;/5 [Wang et al., 2009]
- g€ {n€Z| —4<n<4} [Kwapieh and Drozdz, 2012, Aloui et al., 2018]
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Thermal Optimal Path

m The Thermal Optimal Path (TOP) is a method used to analyze causal relation-
ships and lagged dependencies between two time series [Sornette and Zhou, 2005,
Trichilli and Boujelbéne Abbes, 2023].

m It identifies the optimal path or direction of causality between two time series by
considering their dynamic interactions over time.

m Specifically, the TOP analysis helps establish lead-lag relationships between the
two time series.

m It determines which of the two series tends to manifest changes first, providing
insights into the temporal order of causality.

m In this study, the TOP analysis is applied to explore lead-lag relationships between
Binance and UNISWAP-V2 pricing efficiency mechanism considering ETH priced
in BTC, DAI, and USDT.
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Table: MF-DFA method results for ETH/BTC, ETH/DAI, ETH/USDT on UNISWAP-V2 and Binance exchanges

for three distinct rolling window sizes. Daily observations ranges 08-11-2020 to 05-21-2023.

256 384 512
Pair CEX DEX CEX DEX CEX
ETH-BTC 02685308 (Ill)  0.2264989 (Ill)  0.1713707 (Ill)  0.1365076 (Ill)  0.1435508 (II)
ETH-DAI 0.1844849 (1) 0.1875527 (I1) 0.1339416 (1) 0.1237944 (11) 0.1131219 (1)
ETH-USDT  0.1849068 (I1) 0.186141 (1) 0.1346383 (I1) 0.1234804 (1) 0.113539 (II)

m Lower values indicate higher market efficiency, while higher values suggest lower

efficiency.
m Results are consistent with prior literature:
- market transparency enhances price efficiency [Madhavan, 1996];

- arbitrage opportunities reduce the profitability of market anomalies, thereby improving

price efficiency [Shleifer and Vishny, 1997, Akbas et al., 2016].

m Overall, DEX’s - such as UNISWAP-V2 - offer global accessibility, enabling users
from anywhere in the world to access and trade digital assets. This unrestricted
access may foster a more diverse market, improving price discovery and market

efficiency.
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Table: This table present the percentage of lags under 1 day, indicating instances where decentralized pairs lead, and
the average lags/leads per day, offering insights into temporal dynamics and synchronization patterns.

Lag (1) ETH-DAI ETH-USDT ETH-BTC
256 384 512 256 384 512 256 384 512
X(t) <0 52.048 46.741 61.876 50.594 48.967 59.880 59.445 64.388 59.880
Average 0.188 2.063 —1.357 —0.106 1.699 —1.371 —2.100 —5.465 —2.755

m UNISWAP-V?2 pricing efficiency leads against Binance regarding ETH-BTC pair for
all three rolling window sizes.

m A plausible hypothesis for the leading position of UNISWAP-V2 is the association
with ETH as the native token of the Ethereum blockchain.

m Rolling window of 256 observations, no relevant daily lag for ETH-DAI and ETH-
USDT. For long-term investments, 512 observations, UNISWAP-V2 leads the pric-
ing efficiency against Binance by around one day.

UFRGS 16th M



Introd Conclusi

@®00000

Outline

@ Conclusions

FRGS 16th M




Introduction

Conclusions

[e]e]

O®0000

Conclusions

With an increase in the number of rolling window observations, there is a consistent
increase in the market efficiency of all ETH prices.

Two interconnected viewpoints discussion: market transparency and arbitrage op-
portunities.

Cross-exchange arbitrage [Wang et al., 2022, Vakhmyanin and Volkovich, 2023] within
the decentralized market, offer global accessibility, thus contributing to improved
price discovery and market efficiency.

Users employing algorithmic trading strategies adeptly capitalize on market ineffi-
ciencies.

Fewer regulatory hurdles on the decentralized system enable implementing changes
and innovations, contributing to a nimble adaptation to evolving market conditions.
A culture of financial innovation and rapid adoption of novel concepts further
accelerates responses to challenges in market efficiency.
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