Pricing efficiency in cryptocurrencies: the case of centralized and decentralized markets

Lucas Mussoi Almeida Fernanda Maria Müller Marcelo Scherer Perlin

Annual Conference of the Banco Central do Brasil

16th May 2024

	Methodology 00000	Results 000	Conclusions 000000

1 Introduction

2 LP's Background

3 Data

4 Methodology
MF-DFA
TOP

5 Results

Introduction ●O		Methodology 00000	Results 000	Conclusions 000000

1 Introduction

2 LP's Background

3 Data

4 Methodology
 ■ MF-DFA
 ■ TOP

5 Results

6 Conclusions

PPGA UFRGS

Introduction OO		Methodology 00000	Results 000	Conclusions 000000
Introduction				

- Studying liquidity pool pricing dynamics is crucial for understanding decentralized finance mechanisms and gaining insights into the efficiency of price discovery processes.
- Centralized exchanges like Binance use order book pricing, displaying buy and sell orders, while UNISWAP-V2 employs a liquidity pool mechanism.
- This research investigates the difference in price dynamics and market efficiency in decentralized Ethereum (ETH) prices compared to centralized exchanges.
- The study employs Multi-fractal Detrended Fluctuation Analysis (MF-DFA) to analyze scaling exponents and multi-fractal properties of price data in Binance and UNISWAP-V2 markets for ETH priced in BTC, DAI, and USDT.
- The goal is to quantify and compare the efficiency levels in these markets, determining whether ETH exhibits greater efficiency on centralized or decentralized exchanges.
- To check whether efficiency manifests first, the study incorporates the Thermal Optimal Path (TOP) analysis, providing insights into the lead-lag relationships between the pricing mechanisms for each ETH.

LP's Background ●O	Methodology 00000	Results 000	Conclusions 000000

1 Introduction

2 LP's Background

3 Data

4 Methodology
 ■ MF-DFA
 ■ TOP

5 Results

Introduction	LP's Background	Data	Methodology	Results	Conclusions
00	O●	000	00000	000	000000
LP's Back	ground				

- Constant Function Market Makers (CFMMs) are smart contract-based algorithms designed to provide liquidity to decentralized exchanges and trading platforms.
- Unlike traditional market makers, CFMMs operate with a fixed pricing function, typically involving a linear relationship between quantities of two assets in a trading pair.

$$k = x \times y$$
 or $k = x + y$

- Users deposit assets into the Liquidity Pool (LP) and receive LP tokens representing their pool share.
- CFMMs enable decentralized liquidity provision, reducing slippage on decentralized exchanges but carrying risks like impermanent loss due to asset value fluctuations.

	Data ●00	Methodology 00000	Results 000	Conclusions 000000

1 Introduction

2 LP's Background

3 Data

4 Methodology■ MF-DFA■ TOP

5 Results

	Data 000	Methodology 00000	Results 000	Conclusions 000000
Data				

- Data sourced from The Graph and Binance for ETH prices in BTC, DAI, and USDT.
- Dataset covers 1014 daily observations from August 11, 2020, to May 23, 2023. All time series in the dataset are stationary.
- Analyzed timeframe includes significant events such as the SARS-CoV-2 pandemic peaks, a U.S. presidential inauguration, global supply chain disruptions, BTC reaching an all-time high, Terra-Luna crash, FTX's bankruptcy, and Ethereum merge.

	Methodology ●○○○○	Results 000	Conclusions 000000

1 Introduction

2 LP's Background

3 Data

4 Methodology MF-DFA TOP

5 Results

		Methodology O●○○○	Results 000	Conclusions
NA .1 1 1				
IVIATRODOIO	σ\/			

- Rolling window analysis was employed to perceive the pricing efficiency of ETH priced in BTC, DAI, and USDT.
- The MF-DFA approach is utilized with varying window sizes: 256 (Basel Committee minimum requirement), 512 (Aloui et al., Shrestha approach), and 384 days (average of the two).
- MF-DFA is a technique that allows us to compare and rank market efficiency between Constant Function Market Maker (UNISWAP-V2) and order book (Binance) pricing mechanisms efficiency.

ຮ

	Methodology ○○●○○	Results 000	Conclusions 000000

Multi-fractal Detrended Fluctuation Analysis

Step 1: Given a time series $\{x_t, t = 1, \dots, N\}$, we convert the time series x_t white noise into random walk.

$$X(t) = \sum_{i=1}^{t} (x_i - \overline{x}), \ t = 1, \ \cdots, N$$

Step 2: X(t) is divided into $N_s \equiv int(N/s)$ of non-overlapping segments of equal length s. The detrended time series $(X_s(t))$ is given by the difference between the actual value and its estimate (tendency):

$$X_s(t) = X[N - (v - N_s)s + 1] - x_v(t)$$
 for $v = N_s + 1, \cdots, 2N_s$

Step 3: The variance is

$$F_{xx}^{2}(s, \upsilon) = rac{1}{s} \sum_{t=1}^{s} \{X_{s}(t)\}^{2} ext{ for } \upsilon = N_{s} + 1, ..., 2N_{s}.$$

Step 4: The *q*th order fluctuations are obtained by averaging the variance over all subintervals

$$F_q(s) = \left\{ \frac{1}{2N_s} \sum_{\upsilon=1}^{2N_s} [F^2(s,\upsilon)]^{q/2} \right\}^{1/q} \qquad \qquad \sum_{\upsilon \in \mathbb{R} \setminus \mathbb{G} \setminus \mathbb{S}} \bigcap_{\upsilon \in \mathbb{R} \setminus \mathbb{G} \setminus \mathbb{S}} \mathbb{A}$$

	Methodology ○○○●○	Results 000	Conclusions 000000

Multi-fractal Detrended Fluctuation Analysis

- Step 5: The scaling behavior of the fluctuation functions $(F_q(s))$ is determined by analyzing their log-log plots against s for each value of q.
 - The MF-DFA technique provides a spectrum of generalized Hurst exponents h(q).
 - Thus, we employ a market efficiency measure [Wang et al., 2009, Aloui et al., 2018, Al-Yahyaee et al., 2020]

$$D = \frac{1}{2}(|h(-q) - 0.5| - |h(q) - 0.5|).$$

- Consequently, if the market is perfectly efficient D = 0.
- The MF-DFA parameters:
 - $30 < s < N_s/5$ [Wang et al., 2009]
 - $q \in \{n \in \mathbb{Z} | -4 \le n \le 4\}$ [Kwapień and Drożdż, 2012, Aloui et al., 2018]

Introduction 00	LP's Background 00	Data 000	Methodology ○○○○●	Results 000	Conclusions 000000
Thermal (Optimal Path				

- The Thermal Optimal Path (TOP) is a method used to analyze causal relationships and lagged dependencies between two time series [Sornette and Zhou, 2005, Trichilli and Boujelbène Abbes, 2023].
- It identifies the optimal path or direction of causality between two time series by considering their dynamic interactions over time.
- Specifically, the TOP analysis helps establish lead-lag relationships between the two time series.
- It determines which of the two series tends to manifest changes first, providing insights into the temporal order of causality.
- In this study, the TOP analysis is applied to explore lead-lag relationships between Binance and UNISWAP-V2 pricing efficiency mechanism considering ETH priced in BTC, DAI, and USDT.

	Methodology 00000	Results ●00	Conclusions 000000

1 Introduction

2 LP's Background

3 Data

4 Methodology■ MF-DFA■ TOP

5 Results

Introduction	LP's Background	Data	Methodology	Results	Conclusions
00	00	000	00000	0●0	000000
Results - N	MF-DFA				

Table: MF-DFA method results for ETH/BTC, ETH/DAI, ETH/USDT on UNISWAP-V2 and Binance exchanges for three distinct rolling window sizes. Daily observations ranges 08-11-2020 to 05-21-2023.

	2	56	3	84	5	12
Pair	CEX	DEX	CEX	DEX	CEX	DEX
ETH-BTC	0.2685308 (III)	0.2264989 (III)	0.1713707 (III)	0.1365076 (III)	0.1435508 (III)	0.117233 (III)
ETH-DAI	0.1844849 (I)	0.1875527 (II)	0.1339416 (I)	0.1237944 (II)	0.1131219 (I)	0.09958054 (II)
ETH-USDT	0.1849068 (II)	0.186141 (I)	0.1346383 (II)	0.1234804 (I)	0.113539 (II)	0.09916427 (I)

- Lower values indicate higher market efficiency, while higher values suggest lower efficiency.
- Results are consistent with prior literature:
 - market transparency enhances price efficiency [Madhavan, 1996];
 - arbitrage opportunities reduce the profitability of market anomalies, thereby improving price efficiency [Shleifer and Vishny, 1997, Akbas et al., 2016].
- Overall, DEX's such as UNISWAP-V2 offer global accessibility, enabling users from anywhere in the world to access and trade digital assets. This unrestricted access may foster a more diverse market, improving price discovery and market efficiency.

		Methodology 00000	Results 00●	Conclusions
Results -	ТОР			

Table: This table present the percentage of lags under 1 day, indicating instances where decentralized pairs lead, and the average lags/leads per day, offering insights into temporal dynamics and synchronization patterns.

Lag (I)	ETH-DAI		ETH-USDT		ETH-BTC				
	256	384	512	256	384	512	256	384	512
X(t) < 0	52.048	46.741	61.876	50.594	48.967	59.880	59.445	64.388	59.880
Average	0.188	2.063	-1.357	-0.106	1.699	-1.371	-2.100	-5.465	-2.755

- UNISWAP-V2 pricing efficiency leads against Binance regarding ETH-BTC pair for all three rolling window sizes.
- A plausible hypothesis for the leading position of UNISWAP-V2 is the association with ETH as the native token of the Ethereum blockchain.
- Rolling window of 256 observations, no relevant daily lag for ETH-DAI and ETH-USDT. For long-term investments, 512 observations, UNISWAP-V2 leads the pricing efficiency against Binance by around one day.

	Methodology 00000	Results 000	Conclusions 000000

1 Introduction

2 LP's Background

3 Data

4 Methodology
 ■ MF-DFA
 ■ TOP

5 Results

Introduction OO	LP's Background OO	Data 000	Methodology 00000	Results 000	Conclusions
Conclusions					

- With an increase in the number of rolling window observations, there is a consistent increase in the market efficiency of all ETH prices.
- Two interconnected viewpoints discussion: market transparency and arbitrage opportunities.
- Cross-exchange arbitrage [Wang et al., 2022, Vakhmyanin and Volkovich, 2023] within the decentralized market, offer global accessibility, thus contributing to improved price discovery and market efficiency.
- Users employing algorithmic trading strategies adeptly capitalize on market inefficiencies.
- Fewer regulatory hurdles on the decentralized system enable implementing changes and innovations, contributing to a nimble adaptation to evolving market conditions.
- A culture of financial innovation and rapid adoption of novel concepts further accelerates responses to challenges in market efficiency.

		Conclusions
		000000

Thank You!

Introduction	LP's Background	Data	Methodology	Results	Conclusions
OO	OO	000	00000	000	000000
References I					

- Akbas, F., Armstrong, W. J., Sorescu, S., and Subrahmanyam, A. (2016). Capital market efficiency and arbitrage efficacy. Journal of Financial and Quantitative Analysis, 51(2):387–413.
- Al-Yahyaee, K. H., Mensi, W., Ko, H.-U., Yoon, S.-M., and Kang, S. H. (2020). Why cryptocurrency markets are inefficient: The impact of liquidity and volatility.

The North American Journal of Economics and Finance, 52:101168.

Aloui, C., Shahzad, S. J. H., and Jammazi, R. (2018). Dynamic efficiency of european credit sectors: A rolling-window multifractal detrended fluctuation analysis.

Physica A: Statistical Mechanics and Its Applications, 506:337–349.

Kwapień, J. and Drożdż, S. (2012). Physical approach to complex systems. Physics Reports, 515(3-4):115-226.

Madhavan, A. (1996). Security prices and market transparency. Journal of Financial Intermediation, 5(3):255-283.

Introduction 00	LP's Background OO	Data 000	Methodology 00000	Results 000	Conclusions
Referen	ces II				
	Shleifer, A. and Vishny, F The limits of arbitrage. The Journal of finance, 5	R. W. (1997) . 52(1):35–55.			
	Sornette, D. and Zhou, W Non-parametric determin the 'optimal thermal cau Quantitative Finance, 5(6	VX. (2005). ation of real-ti sal path'metho 6):577–591.	me lag structure b d.	etween two time s	series:
	Trichilli, Y. and Boujelbè The impact of covid-19 of EuroMed Journal of Busi	ne Abbes, M. on the portfolic iness, 18(2):20	(2023). o optimization. 7–228.		
	Vakhmyanin, I. and Volk Price arbitrage for defi de In 2023 IEEE Internation (ICBC), pages 1–4.	ovich, Y. (2023 erivatives. al Conference	3). on Blockchain and	Cryptocurrency	
	Wang, Y., Chen, Y., Wu, Cyclic arbitrage in decent In <i>Companion Proceeding</i>	, H., Zhou, L., tralized exchan gs of the Web	Deng, S., and Wa ges. Conference 2022,	ttenhofer, R. (202 pages 12–19.	22). PPGA

	Methodology 00000	Results 000	Conclusions

References III

Wang, Y., Liu, L., and Gu, R. (2009).

Analysis of efficiency for shenzhen stock market based on multifractal detrended fluctuation analysis.

International Review of Financial Analysis, 18(5):271-276.

