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Non-Technical Summary

A network is a collection of nodes linked through edges. For instance, in a financial
network (say, a bank-firm credit network), the nodes are the banks and firms, and the
edges, are the loans extended by the former to the latter. Due to these connections, a shock
in one of the nodes can spread to the other nodes. For example, a firm hit by a negative
shock will not fully honor its debt obligations against its creditor banks, imposing losses
to these banks as well. Similarly, these banks will impose losses on their creditors in the
interbank market, and so on. This additional loss engendered by this contagion process is
called systemic risk (SR).

A key feature of a complex network – which is the case of real financial networks – is
that its elements (nodes and edges) are heterogeneous regarding their importance to the
whole network. Therefore, it is expected that each edge has a different impact in the SR
of the network. Considering this, we propose a methodology to identify critical edges in
financial networks – that is, those edges whose removal would cause a large impact on the
SR of the network. This is done by comparing the SR of the financial network before and
after the removal of the edge. The critical edges are the outliers considering this impact –
that is, those whose impact is much larger than the average impact.

We apply this framework to a thorough Brazilian dataset to identify critical bank-firm
edges. In our data set, banks and firms are connected through two financial networks: the
interbank network and the bank-firm loan network. At least 18% of the edges are critical,
but this fraction depends on the level of the initial shock. Employing machine learning
(ML) techniques and a set of explanatory variables, we can predict the edges’ critical
status with a high level of accuracy (around 90%). Moreover, this analysis shows some
important predictive features interact nonlinearly with the predicted critical status.

An interesting phenomenon emerges when we raise the value of the initial shock: the
fraction of edges whose impact is not positive increases from virtually zero to almost
18%. We investigated this phenomenon using the same ML techniques and explanatory
variables. We found the sign of the edge’s impact is mainly related to the degree (i.e.,
the number of connections) of its origin node – that is, the lender. Edges whose origin
node has a higher in-degree (that is, a high number of lending partners) have a higher
probability of having a positive impact on the systemic risk of the whole network. On
the other hand, edges whose origin node has a higher out-degree (number of borrowing
partners) have a higher probability of having a non-positive impact on systemic risk.
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Sumário Não Técnico

Uma rede é uma coleção de nós ligados por arestas. Por exemplo, em uma rede financeira
— como uma rede de crédito banco-firma —, os nós são os bancos e as firmas e as arestas,
os empréstimos concedidos pelos primeiros aos segundos. Devido a essas conexões, um
choque em um dos nós pode se espalhar para os demais. Por exemplo, uma firma atingida
por um impacto negativo não honrará integralmente as suas dívidas com os seus bancos
credores, impondo perdas também para esses bancos. Da mesma forma, esses bancos
imporão perdas aos seus credores no mercado interbancário, e assim por diante. Essa
perda adicional gerada por este processo de contágio é denominada risco sistêmico (RS).

Uma característica fundamental de uma rede complexa -– que é o caso das redes fi-
nanceiras reais — é que seus elementos (nós e arestas) são heterogêneos quanto à sua
importância para o toda a rede. Portanto, espera-se que cada aresta tenha um impacto
diferente no RS da rede. Considerando isso, propomos uma metodologia para identificar
arestas críticas em redes financeiras – isto é, aquelas arestas cuja remoção causaria um
grande impacto no RS da rede. Isto é feito comparando o RS da rede financeira antes e
após a remoção da borda. As arestas críticas são os outliers considerando-se esse impacto
— isto é, aquelas cujo impacto é muito maior que o impacto médio.

Aplicamos essa metodologia a um amplo conjunto de dados brasileiro para identificar
arestas críticas entre bancos e empresas. No nosso conjunto de dados, os bancos e as
firmas estão ligados através de duas redes financeiras: a rede interbancária e rede de
empréstimos banco-firma. Pelo menos 18% das arestas são críticas, mas essa fracção
depende do nível do choque inicial. Empregando técnicas de aprendizado de máquina
(AM) e um conjunto de variáveis explicativas, podemos prever a criticalidade das arestas
com um alto nível de precisão (cerca de 90%). Além disso, essa análise mostra que al-
gumas variáveis preditivas importantes interagem de forma não linear com a criticalidade
prevista das arestas.

Um fenômeno interessante surge quando aumentamos o valor do choque inicial: a fração
de arestas cujo impacto não é positivo aumenta de praticamente zero para quase 18%. Nós
investigamos esse fenômeno usando as mesmas técnicas de AM e variáveis explicativas.
Descobrimos que o sinal do impacto da aresta está principalmente relacionado ao grau
(ou seja, o número de conexões) do seu nó de origem – ou seja, o credor. Arestas cujo nó
de origem possui um maior grau de entrada (ou seja, um maior número de concessores de
empréstimo) têm uma maior probabilidade de ter um impacto positivo no risco sistêmico
da rede. Por outro lado, arestas cujo nó de origem tem um grau de saída mais alto (maior
número de tomadores de empréstimos) têm uma maior probabilidade de ter um impacto
não positivo no risco sistêmico.
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1 Introduction

This paper deals with the impacts of interconnectedness on the stability of financial networks. A
network can be represented as a collection of nodes (or vertices) connected through edges. Financial
networks are ubiquitous, such as interbank markets (Allen and Gale, 2000; Bardoscia et al., 2016),
bipartite bank-firm credit networks (De Masi and Gallegati, 2012; Lux, 2016), networks of correlated
assets (Gabaix et al., 2003; Mantegna and Stanley, 1995), and so on. The type of node varies according
to the network (e.g., banks in interbank networks, banks and firms in bank-firm credit networks), and
so does the type of edge (e.g., loans in bipartite bank-firm credit networks, return correlations in
networks of correlated assets).

The interconnections among financial agents configure a channel for both risk-sharing and
shock propagation. It configures the so-called robust-yet-fragile nature of financial networks (Chi-
nazzi and Fagiolo, 2015). Until recently, before the 2008 crisis, the conventional wisdom regarding
the impact of interconnectedness in financial networks went hand in hand with the view expressed in
Allen and Gale (2000) seminal paper. According to this paradigm, the benefits brought about by risk
diversification overcome the contagion problems. Therefore, more interconnected financial networks
would be more resilient. However, the 2008 financial turmoil defeated this view. The burst of the
subprime mortgage bubble in the United States in 2007 led, through a network of complex financial
linkages, to the collapse of big risk-taking banks, like that of Lehman Brothers in September 2008.
Since then, interconnectedness in financial networks has been mostly associated with the propagation
of losses between different financial actors (Acemoglu et al., 2015; Battiston and Martinez-Jaramillo,
2018; Gai and Kapadia, 2010; Glasserman and Young, 2015, 2016; Martinez-Jaramillo et al., 2019).

The propagation of shocks among different interconnected financial agents can lead to the col-
lapse of a non-negligible part of the whole system. This risk is called systemic risk (SR). An inter-
esting research question is how the tiniest variation in the interconnectedness of a financial network
– namely, the inclusion/removal of an edge – affects SR. On the other hand, the most striking char-
acteristic of complex networks – the case of real financial networks – regards the heterogeneity of
their components (Albert and Barabási, 2002). Within this perspective, we can define critical edges

as extraordinary edges that play a more significant role than other edges in the structure and function
of the network (Yu et al., 2018). Specifically in the context of this study, the removal of a critical edge
would have a much greater impact on the SR of the network than the removal of a non-critical edge.

In this paper, we propose a framework to the identification of critical edges in financial net-
works. Although node importance has been explored more often,1 the study of the criticality of edges
in networks has attracted much attention from researchers in many fields (Bröhl and Lehnertz, 2019;
De la Cruz Cabrera et al., 2020; Hajarathaiah et al., 2024; Song, 2023; Yu et al., 2018; Zhao et al.,
2020). Identifying critical edges helps in the design of procedures to keep or increase the resilience
of a network (Song, 2023; Zhao et al., 2020). Moreover, the removal of edges as a strategy to protect
the network is much less costly than the node-cutting strategy. For instance, the withdrawal of certain

1See, for instance, Alexandre et al. (2021), Ghanbari et al. (2018), Kuzubas et al. (2014), and Martinez-Jaramillo et al.
(2014) specifically on the identification of important nodes in financial networks.
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financial products is much more applicable than removing financial institutions to prevent financial
crises (May et al., 2008). Many approaches have been proposed to identify the importance of edges in
networks. Onnela et al. (2007) measure the importance of an edge based on the number of common
neighbors between the nodes linked by the node. Yu et al. (2018) propose a measure of edge relevance
based on their betweenness centrality and the number of cliques containing the edge. Betweenness
centrality is also the basis of the metric of edge importance suggested by Kanwar et al. (2022). The
metric proposed by Helander and McAllister (2018) exploits the properties of a k-shortest path algo-
rithm. Zhao et al. (2020) create a second-order neighborhood index to quantify the relevance of an
edge in a network.

As far as we know, the only study devoted specifically to the identification of critical edges
in financial networks is that of Seabrook et al. (2021). The authors defined a structural importance
metric, le, based on the change in the largest eigenvalues of the adjacency matrix of the network
resulting from perturbations in it. The authors then propose a model of network evolution where
this metric controls the probabilities of subsequent edge changes. Using synthetic data, they show
how the parameters of the model are related to the capability of le to predict whether an edge will
change. Assessing five real networks (four financial and one social), the authors showed le is slightly
predictive of edge change in all cases, but only marginally so for two of the financial networks.

In this study, we propose a method for the identification of influential edges based on the impact
of their removal on the stability of the financial network. First, we compute the impact of the edge by
measuring the change in the systemic risk of the financial network caused by the removal of the edge.
Next, we identify the critical edges as the outliers according to this impact, following the interquartile
range (IQR) approach. Thus, the critical edges are those whose removal would cause a large impact
on the systemic risk of the financial network. Finally, we employ machine learning (ML) techniques
to classify an edge as critical using topological and financial features as predictive variables. Shapley
values are used in the interpretation of the results, showing which features are more relevant in the
definition of critical edges in financial networks.

We apply this framework to a thorough Brazilian dataset to identify critical bank-firm edges –
that is, edges whose origin nodes are banks and destination nodes are firms. In other words, we are
assessing the criticality of edges that represent loans extended by banks to firms. In our data set, the
two types of agents – banks and firms – are connected through two financial networks: the interbank
network and the bank-firm loan network. We found at least 18% of the edges are critical (depending
on the level of the initial shock), in the sense they have a significant impact on the systemic risk of
the network. Moreover, we observed that, for a larger level of the initial shock, the fraction of edges
with non-positive impact rises significantly.

We then employ machine learning (ML) techniques and a set of predictive features to predict
the critical status of the bank-firm edges, as well as the sign of the edge impact for a large level of the
initial shock. The purpose is to identify which features (from the edges or the nodes) are the drivers
of edge criticality and – in the case of large shocks – of positive impacts of the edge on the SR. The
level of accuracy obtained in these prediction exercises was very high (above 90%). We use Shapley
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values for the sake of a better interpretability of our results. This analysis shows: i) the PageRank of
the edge’s destination – that is, the firm – is the main driver of the critical status of the edges; and ii)
the sign of the edges’ impact depends on the degree of the edge’s origin node (the bank).

Our study is related to the literature on the relationship between interconnectedness and SR in
financial networks. It is widely accepted that this relationship is nonlinear (Gai and Kapadia, 2010;
Nier et al., 2007), and driven by other elements, such as the size of the initial shock (Acemoglu et al.,
2015) and the loss distribution regime adopted by distressed debtors (Alexandre et al., 2023). In this
study, we assess how the tiniest change in the interconnectedness – that is, removal/inclusion of edges
– impacts the SR of the financial network. We show the edges have different degrees of importance to
the resilience of the financial network, corroborating the heterogeneous nature of financial networks.
Moreover, we identify which features – among a set of variables related to the edge and its nodes –
drive the size and the sign of the impact of an edge on the stability of the financial network.

This paper proceeds as follows. The data set and methodological issues are discussed in Sec-
tions 2 and 3, respectively. Section 4 brings the results. Final considerations are presented in Section
5.

2 The data set

Our data set comprises two types of information: i) financial and supervisory (F & S) infor-
mation on the agents, which can be financial institutions (FIs) or firms, and ii) information on the
financial linkages between these agents. The FIs of our data set can be banks or credit unions. All
these data are from December 2022.

We include in our data set FIs which are financial conglomerates or individual FIs. Concerning
the firms, we include those belonging to the Alexandria database (Docha and Rodrigues, 2023) with
positive net worth. The Alexandria database gathers information on more than 42,000 firms, of which
more than 31,000 are non-financial companies (NFCs). Most of these firms are medium-sized and
owned by non-residents. The firms belong to 18 different economic sectors, labeled from A to S (we
are only considering NFCs, so financial firms are excluded). The F & S information on these agents
includes net worth, financial indicators (e.g., ROE), type of control, economic sector, and so on.

Regarding the financial linkages, we consider two financial networks: the interbank (IB) and
the bank-firm credit network. In the IB network, we consider the net financial exposures between
Brazilian FIs in the IB market. This network comprises all types of unsecured financial instruments,
such as credit, capital, foreign exchange operations, and money markets. These financial instruments
are registered in different custodian institutions – Cetip, Central Bank of Brazil, and B3. Exposures
between FIs belonging to the same financial conglomerate are excluded. The bank-firm credit network
encompasses the corporate loans granted by FIs to non-financial firms. The source of this information
is the Central Bank of Brazil’s Credit Risk Bureau System (SCR). Besides the value of these exposures
for both networks, we have more information on the bank-firm loans, such as the interest rate and
maturity. Some topological metrics of both networks are presented in Table 1.
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Table 1: Some topological metrics of the networks

Type of network Metric Value

IB network

N. of nodes 803
N. of edges 2971
Assortativity -0.3630
Average degree 7.3998
Average closeness centrality 0.1220
Average eigenvector centrality 0.0174

Bank-firm network

N. of nodes 11,955
N. of edges 28,157
Assortativity -0.3965
Average degree 4.7105
Average closeness centrality 0.0002
Average eigenvector centrality 0.0063

3 Methodology

As stated in Section 2, we consider two types of financial linkages: the IB market and the bank-
firm credit network. Figure 1 depicts a simple representation of our financial networks. The nodes
in blue are the banks, labeled as B1,...,B4, and the nodes in coral are firms, labeled as F1,...,F3. The
edges in red represented the IB connections and those in green, the bank-firm linkages. Edges are
directed, showing the origin node and the destination node, and weighted. For instance, bank 3 (B3)
has lent an amount of resources equal to 10 to bank 2 (B2) in the IB market and equal to 5 to firm 2
(F2).

Figure 1: A stylized representation of a financial network
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The first step is to compute the SR of the whole system depicted in Figure 1 by imposing losses
in the form of net worth decrease to all firms at the same time. The net worth of both FIs and firms
and the exposures among them in the two financial networks will be used at this step. The green edges
are responsible for the direct losses this initial shock will cause on the banks. The red edges represent
the IB connections that will amplify this initial shock – that is, they are responsible for the contagion.

We are interested in measuring the systemic relevance of bank-firm edges – that is, the green
edges. This is done by removing one edge at a time and computing the proportional difference in the
SR of the system. This metric is the edge’s impact. An edge is deemed as critical if it is an outlier
considering its impact, according to the IQR approach. Finally, we perform some prediction exercises.
The topological variables built from the two networks, along with the F& S variables on the agents
and the variables related to the bank-firm loan itself, will constitute the set of potential explanatory
variables. These variables will be employed to predict the target variables – the edges’ critical status
and the sign of the edges’ impact — through ML techniques. In the following subsections, we detail
our methodological process.

3.1 Systemic risk

In what follows, we describe the differential DebtRank (DDR) approach (Bardoscia et al., 2015),
used to compute the SR of the financial network. Let us define Ei as the equity of agent i and Ai j, the
net exposure of agent i towards agent j. The agents correspond to banks and firms in Figure 1, and
the exposures, to the weight of the edges between them. At period t = 0, we impose an exogenous
shock on the network, in which some agents will lose a fraction ζ of their equity. At t = 1, the agents
hit by the exogenous shock will transmit part of this loss to their creditors, by defaulting on part of
their debt. In the next period, the agents that suffered some loss (that is, those with exposures towards
the agents hit by the exogenous shock) will transmit part of this loss to their creditors. This process
of loss transmission will continue in the subsequent periods. At a given period t, the accumulated
loss transmitted by agent j to its creditor i is Li j(t). The aggregate loss suffered by i (considering
all i’s debtors) up to t is Li(t). The dynamics of these two variables are represented by the following
equations:

∆Li j(t) = min
(

Ai j −Li j(t −1),Ai j
[L j(t −1)−L j(t −2)]

E j

)
, (1)

∆Li(t) = min

(
Ei −Li(t −1),∑

j
∆Li j(t)

)
, (2)

in which t ≥ 0. In Eqs. 1 and 2, ∆Li j(t) = Li j(t)−Li j(t −1) is the new flow of loss transmitted by j

to i at t, and ∆Li(t) = Li(t)−Li(t −1) is the variation in the total loss transmitted to i by their debtors
at t. Thus, the loss transmitted by a given debtor to a given creditor is the proportional loss of equity
suffered by the debtor times the exposure of the creditor on it. Observe, from Eq. 1, that the loss
imposed by j to i cannot be greater than i’s exposures towards j. Moreover, an agent cannot suffer a

10



loss greater than its equity (Eq. 2).

At t = T ≫ 0, the system converges – i.e., when no more losses are transmitted. Then, we
compute the systemic risk of the network according to the following equation:

Sζ = 100× ∑i[Li(T )−Li(0)]
∑i Ei

. (3)

Therefore, the systemic risk Sζ of the network is the percentage of the aggregate equity of the
system which is lost after an exogenous shock of size ζ . Observe that we remove Li(0) from the
computation, which is the loss resulting from the exogenous shock. Thus, Sζ considers only the loss
resulting from the contagion process.

Figure 2 gives a simple example of how SR is computed according to the DDR approach.
Considering again Figure 1, suppose F3 loses 20% of its net worth. This firm will default the same
fraction on the exposures of B1, its only creditor, towards it. For simplicity, assume all banks have a
net worth equal to 4. The loss transmitted by F3 to B1 (0.2×5 = 1) corresponds to 25% of B1’s net
worth. The exposure of B1 towards F3 reduces to 4 (Figure 2, panel (a)). In the next step, B1 defaults
25% on the exposures of B2 in the IB towards it, imposing to B2 a loss (0.25×8 = 2) equal to 50%
of its net worth (Figure 2, panel (b)). Finally, B2 defaults 50% on its creditors’ exposures, B3 and B4
(Figure 2, panel (c)). However, as the loss suffered by an agent cannot be greater than its net worth
(Equation 2), this loss is capped at 4 for both B3 and B4. The process stops, as B3 and B4 have no
creditors. The SR engendered by an initial shock of 20% on F3’s net worth is equal to the total loss
excluding the initial shock (2+4+4 = 10) divided by the aggregate banks’ net worth (4×4 = 16) –
that is, 62.5%.

Figure 2: Example of SR computation through the DDR approach

(a) (b) (c)

3.2 Classification of critical edges

The next step is to set the critical status of the edges. For each edge e of the network, we
compute its impact in the systemic risk Ie,ζ :

Ie,ζ =
Sζ −S−e,ζ

S−e,ζ
, (4)
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where S−e,ζ is the systemic risk of the network for an exogenous shock of size ζ computed after the
removal of edge e. If Ie,ζ > 0, it means the edge has a positive impact on the systemic risk of the
network for that level of ζ .

Considering the distribution of Ie,ζ , we assign each edge a label Ce,ζ according to

Ce,ζ =

1, if Q1−1.5IQR > Ie,ζ | Q3+1.5IQR < Ie,ζ

0, otherwise
(5)

where Q1 is the first quartile of the distribution of Ie,ζ , Q3 is the third quartile, and IQR is the in-
terquartile range Q3−Q1. Therefore, an edge will be classified as critical if it is an outlier considering
the distribution of Ie,ζ , according to the IQR criterion.

3.3 Machine learning techniques

The final step is the prediction of the target variables – the critical status of the edges and the
sign of the edges’ impact – through ML techniques. For this task, we rely on the Tree-based Pipeline

Optimization Tool (TPOT), a programming-based automated machine learning (AutoML) system (Ol-
son and Moore, 2016). TPOT uses a genetic programming (GP) stochastic global search procedure
to efficiently discover the top-performing ML algorithm, as well as the optimal hyperparameters, for
a given prediction problem. The search performed by TPOT encompasses all models included in the
Scikit-learn library, including linear (e.g., linear regression, logistic regression, ElasticNet, etc.) and
nonlinear (SVM, tree-based models, XGBoost, neural networks, etc.) models. The TPOT pipeline
was used to perform the following tasks: data cleaning, feature selection, feature processing, feature
construction, model selection, hyperparameter optimization, and model validation (Figure 3). The set
of potential explanatory variables is presented in Table A1.

Figure 3: Overview of the TPOT pipeline search. Source: Olson et al. (2016)

For the interpretability of the predictions made by the ML model, we use the Shapley values
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approach, which originated from the coalition games theory (Shapley, 1953; Shoham and Leyton-
Brown, 2008). This methodology informs on how important is a given feature in the prediction of
the output, as well as whether this feature is positively or negatively correlated to the output. For the
computation of Shapley values, we resort to the SHAP (SHapley Additive exPlanation) framework
(Lundberg and Lee, 2017). Let g be an explainer model aiming at predicting an output. A set of M

features will be used as inputs. The predicted value for a given data instance is given by

g(z′) = φ0 +
M

∑
i=1

φiz′i, (6)

where φ0 is the mean output, φi is the SHAP value of feature i, and z′ is a binary variable indicating
whether feature i was included in the model or not. Therefore, the SHAP value φi indicates to what
extent the inclusion of feature i in the model shifts (upwards or downwards) the predicted value from
the mean output. If certain properties (local accuracy, missingness, and consistency) are met, φi

corresponds to the original Shapley value (Lundberg and Lee, 2017). The SHAP value of feature i is
defined by the following equation:

φi = ∑
S⊆M\i

|S|!(|M|− |S|−1)!
M!

[F(S∪{i})−F(S)]. (7)

Therefore, the SHAP value of feature i for a given data instance computes the difference be-
tween the predicted value of the instance using all features in S plus feature i, F(S∪{i}), and the
prediction excluding feature i, F(S). This is weighted and summed over all possible feature vector
combinations of all possible subsets S.

4 Results

4.1 General results

We computed the Ie,ζ (Eq. 4) for the bank-firm edges considering two values of ζ : 0.1 and
0.5. The great majority of observations (99.8% for ζ = 0.1 and 82.8% for ζ = 0.5) are positive. It
means, in most of the cases, the inclusion of the edge increases the systemic risk. It corroborates the
idea that financial networks are robust-yet-fragile (Haldane, 2013): if the financial network is sparse
enough (what is the case of our network), shock propagation prevails over risk-sharing. Therefore, an
increase in the interconnectedness of the network causes an increase in the systemic risk.

The majority of the values of Ie,ζ are very small, as well as the dispersion of these values. The
maximum impact is around 2% for ζ = 0.1 and 1% for ζ = 0.5. According to the criteria set in Eq. 5,
around 18.7% (22.0%) of the bank-firm edges are critical for ζ = 0.1 (ζ = 0.5). The average impact
of critical edges is around 5 times higher than that of all edges. Moreover, the impact is higher for
ζ = 0.1. Some statistics of Ie,ζ are presented in Table 2.
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Table 2: Statistics of Ie,ζ

Statistic
All edges Critical edges

ζ = 0.1 ζ = 0.5 ζ = 0.1 ζ = 0.5
Mean 3.16e-05 1.83e-05 1.60e-04 8.24e-05
Std. dev. 2.26e-04 1.51e-04 5.01e-04 3.14e-04
Min. -1.92e-04 -1.92e-04 -1.92e-04 -1.92e-04
1st quartile 2.37e-08 1.43e-14 3.00e-05 7.84e-06
Median 6.12e-07 3.48e-08 5.36e-05 1.86e-05
3rd quartile 9.19e-06 2.24e-06 1.26e-04 5.41e-05
Max. 2.06e-02 1.06e-02 2.06e-02 1.06-02

4.2 Predicting edges’ critical status

We then applied the TPOT approach in our set of predictive variables (Table A1) to predict
the critical status of the bank-firm edges. We split our observations into in-sample (80%) and out-
of-sample (20%) data sets. The in-sample data set was oversampled through the Synthetic Minority
Oversampling Technique (SMOTE) methodology (Chawla et al., 2002) so the fraction of critical
edges reached 50% before being used to train the model. We evaluate the model using accuracy as
the performance metric through the k-fold cross-validation technique, with k = 5 and 10 repetitions.

The model selected by the TPOT pipeline was the XGBoost (Friedman et al., 2000) for ζ = 0.1
and the Random Forest (Breiman, 2001) for ζ = 0.5. The optimal hyperparameters are presented in
Table 3. In the in-sample data set, the model has achieved an accuracy of over 90% (Figure 4), being
slightly higher for ζ = 0.5. Table 4 presents some performance metrics for the out-of-sample data set.

Table 3: Hyperparameters of the ML models for the prediction of the edges’ critical status

Model Hyperparameter Value

XGBoost

learning_rate 0.5
max_depth 2
min_child_weight 20
n_estimators 100
subsample 0.9

Random Forest

bootstrap True
criterion Gini
max_features 0.05
min_samples_leaf 5
min_samples_split 12
n_estimators 100
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Figure 4: Histogram of accuracy – in-sample data set. Target variable: edges’ critical status

ζ = 0.1 ζ = 0.5

Table 4: Performance metrics – out-of-sample data set. Target variable: edges’ critical status

Metric ζ = 0.1 ζ = 0.5
Precision 0.68 0.70
Recall 0.78 0.90
F1-score 0.72 0.79
Accuracy 0.88 0.89

The SHAP analysis (Figure 5) shows the main drivers of the critical status of the bank-firm
edges. The figure can be interpreted as follows: for each feature, it is shown which observations
have their predicted output increased (those at the right of the vertical axis) or decreased (those at
the left of the vertical axis) after the inclusion of the feature in the model as a predictive variable.
On the other hand, the observations closer to the red (blue) color spectrum have a higher (smaller)
value of the feature. For instance, for ζ = 0.1, edges with a smaller value of the borrower’s PageRank
(PR_brw) are concentrated at the left side of the vertical axis – that is, the probability of these edges
being critical decreases when this feature is used as a predictive variable. Thus, there is a positive
correlation between the probability of an edge being critical and the value of the PageRank of the firm
which is the destination node of this edge.

The features are sorted in descending order according to the mean absolute SHAP value. The
relative importance of the features in predicting the critical status of the bank-firm edges varies ac-
cording to the level of the initial shock. For ζ = 0.1, the PageRank of the borrower (that is, the firm)
is the main driver of the edge’s critical status, followed by the borrower’s net worth (nw_brw) and the
average interest rate (avg_int_rate). The first two features are positively correlated to the probability
of edges being critical. Thus, edges which are loans extended to firms with a large PageRank and a
large net worth have a higher probability of being critical.

For ζ = 0.5, the borrower’s PageRank is also the main driver of the edge’s criticality. The
average interest rate appears as the second most important driver. The relationship between this
feature and the target variable is nonlinear, as can be seen by the presence of edges with a high interest
rate (red observations) in the middle of the horizontal axis. This nonlinear relationship between the
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interest rate and the edge’s criticality is also observed for ζ = 0.1. Comparing the two levels of ζ , the
most striking difference is that the firm’s net worth loses importance as a driver of the edge critical
status. This result is expected, as firms with a not-so-large net worth can cause a large impact under a
higher level of initial shock.

Figure 5: SHAP values, 10 most important features. Target variable: edges’ critical status

ζ = 0.1 ζ = 0.5

Figures B1 and B2 depict the SHAP partial dependence plots of the most relevant continuous
features for both values of ζ . These figures show how the expected value of the target variable varies
according to the value of the feature. We can observe that some of these features present a nonlinear
pattern of interaction with the target variable, corroborating the findings of Figure 5. For instance, in
Figure B2, an increase in the interest rate initially leads to a rise in the predicted value of the target
for small values of the feature. However, if this value surpasses a given threshold, further increases in
the value of the feature lead to a decrease in the predicted value of the target variable.

4.3 Predicting the sign of the edges’ impact

A striking difference related to the size of the initial shock regards the fraction of edges with
non-positive impact. When ζ = 0.1, virtually all edges (99.8%) have a positive impact. It means
the inclusion of these edges leads to an increase in the systemic risk of the network. However, for
ζ = 0.5, a significant fraction of the edges has a non-positive impact. Around 14.7% of the edges
have a null impact on the systemic risk and 3.1% have a negative impact. Thus, we decided to predict
the sign of the edges’ impact when ζ = 0.5.

We created a dummy variable equal to one when the impact of the edge is null or negative,
and zero otherwise. We followed the same methodological steps described in Section 4.2, but now
to predict this dummy variable. The optimal hyperparameters of the model selected by the TPOT
pipeline (XGBoost) are presented in Table 5.
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Table 5: Optimal hyperparameters of the XGBoost model chosen by the TPOT pipeline to predict the sign of the edges’
impact for ζ = 0.5

Hyperparameter Value
learning_rate 0.1
max_depth 8
min_child_weight 1
n_estimators 100
subsample 0.85

The accuracy in the in-sample data set is above 97% (Figure 6). The model also performed very
well in the out-of-sample data set, as can be seen in Table 6.

Figure 6: Histogram of accuracy – in-sample data set. Target variable: sign of the edges’ impact, ζ = 0.5

Table 6: Performance metrics – out-of-sample data set. Target variable: sign of the edges’ impact, ζ = 0.5

Metric Value
Precision 0.86
Recall 0.93
F1-score 0.89
Accuracy 0.96

Figure 7 depicts the SHAP values. It shows the sign of the edges’ systemic relevance is mostly
related to the degree of the lender. The in-degree of the lender is negatively related to the probability
of the sign of the edge’s impact being non-positive. There is a critical value of the in-degree kC ≈ 60
above which this probability drops to zero (Figure 8, panel (a)). Thus, edges whose origin are lenders
with a in-degree above this critical value have a greater chance of having a positive impact on the
systemic risk. On the other hand, the probability of the edge having a non-positive impact increases
with the out-degree of the lender, as can be seen in Figure 8, panel (b).
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Figure 7: SHAP values, 10 most important features. Target variable: sign of the edges’ impact, ζ = 0.5

Figure 8: SHAP partial dependence plots, lenders’ in- and out-degree. Target variable: sign of the edges’ impact, ζ = 0.5

(a) (b)

5 Concluding remarks

In this paper, we presented a methodology to identify critical edges in financial networks. The
advantage of our approach is that this is explicitly related to the impact of the edge on the systemic
risk of the financial network. We first compute the systemic risk of the financial network. Then we
assess how this measure of systemic risk is impacted by the removal of the edge. The edges deemed
as critical are those which are outliers according to this impact. Thus, a critical edge is that whose
removal would cause a large impact on the systemic risk of the network.

We applied this framework to a thorough Brazilian dataset to identify critical bank-firm edges.
The majority of the edge impacts are positive. This finding goes in hand with the robust-yet-fragile
nature of financial networks: in sparse networks (what is the case of real financial networks), an
increase in the interconnectedness (represented by the addition of an edge) would have a positive im-
pact on the systemic risk. The reason is that, for low levels of interconnectedness, shock propagation
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prevails over risk-sharing. For a smaller level of the initial shock (ζ = 0.1), at least 18% of the edges
are critical, but this percentage rises to 22% for ζ = 0.5.

We applied ML-based models to predict the critical status of bank-firm edges, to identify which
features drive the size, and – in the case of large shocks – the sign of the edges’ impact on the SR.
These models proved to have high predictive power for this specific task, showing a level of accuracy
of around 90%. A posterior interpretative analysis carried out through Shapley values showed the
main predictor of the critical status of bank-firm edges is the PageRank of the borrower — that is,
the firm – for both values of ζ . Edges whose destination node has a large PageRank have a higher
probability of being critical. The interest rate of the loan and the net worth of the firm are other
important drivers of the edge’s criticality. While the former feature interacts nonlinearly with the
target variable, the latter loses importance for a higher value of the initial shock.

When the value of the initial shock ζ rises from 10% to 50%, an interesting phenomenon
emerges: the fraction of edges whose impact is not positive increases from virtually zero to 17.8%.
We investigated this phenomenon and found the sign of the edge’s impact is mainly related to the
degree of its origin node – that is, the lender. Edges whose origin node has a higher in-(out-)degree
have a higher probability of having a positive (non-positive) impact on the systemic risk of the whole
network.

This study contributes to the literature on the relationship between interconnectedness and sys-
temic risk. Our results show that the impact of removing or adding edges – that is, changes in in-
terconnectedness – on systemic risk is heterogeneous. Some edges are much more influential than
others on the systemic risk of the financial network. In addition, we show which features – related
to the origin node, the destination node, or the edge itself – identify an edge as critical. The relative
importance of the features in predicting the systemic importance of the edge varies according to the
level of the initial shock. Our results are also useful for policy-making purposes. They help financial
regulators in the identification of financial transactions that will have the greatest impact on systemic
risk and should therefore be closely monitored. Finally, by showing the firm’s PageRank is the most
important driver of the bank-firm edge’s critical status, we corroborate the findings of other studies
(Alexandre et al., 2021; Ghanbari et al., 2018; Kuzubas et al., 2014; Martinez-Jaramillo et al., 2014),
according to which topological variables are at least as important as financial variables in driving
systemic risk.
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Appendix A Potential explanatory variables

Table A1: List of potential explanatory variables

Type Description of the variable Acronym

Lenders’ F & S
variables

Net worth nw_lnd
Return over equity roe_lnd
Leverage lev_lnd
Liquidity liq_lnd
Provisions-to-loans ratio qualasset_lnd
Dummy variable for private banks private_lnd
Dummy variable for foreign banks foreign_lnd
Dummy variable for credit unions cred_union_lnd

Borrowers’ F & S
variables

Net worth nw_brw
Return over equity roe_brw
Leverage lev_brw
Bank debt-to-total debt ratio bnkdebt_brw
Market debt-to-total debt ratio mktdebt_brw
ROF debt-to-total debt ratio rofdebt_brw
Number of employees qtt_emp_brw
Average wage avg_wage_brw
Share of female employees share_women_brw
Age of the firm age_brw
Short-term external debt ratio extdebtst_brw
Dummy for Limited Society ltd_brw
Dummies for the economic sector sector_brw_k∗

Topological variables∗∗

In-degree Kin
Out-degree Kout
Core number KC
Closeness centrality (incoming links) CCin
Closeness centrality (outgoing links) CCout
Betweenness centrality B
Eigenvector centrality (incoming links) ECin
Eigenvector centrality (outgoing links) ECout
PageRank PR

Transaction variables
Average interest rate avg_int_rate
Average maturity avg_matur
Provision-to-value ratio prov

(*): k refers to the economic sector, represented by letters from A to S.
(**): The suffix "_lnd" (for lenders) or "_brw" (for borrowers) will be added to the acronym.
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Appendix B SHAP partial dependence plots

Figure B1: SHAP partial dependence plots, most important features. Target variable: edges’ critical status, ζ = 0.1

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Figure B2: SHAP partial dependence plots, most important features. Target variable: edges’ critical status, ζ = 0.5

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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